International Journal of Management, IT & Engineering

Vol. 16 Issue 01, January 2026,
ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

Process for Identifying and Securing Data Compoents of

Application

Veerbhadra Magdum

Abstract

Keywords:

Application Security;
SecOps; DevSecOps;
AppDevSecOps;
Data at Rest;

Data in Transit;
DAR;

DIT.

This article examines Data at Rest (DAR) and Data in Transit (DIT) security
components, and controls around those components in a web application
environment. Traditional policies around these controls look at all the
applications and systems with a one solution fits all, kind of an approach while
devising policies around DAR and DIT. Modern applications are getting
increasingly complex and use distinctive security components and security
methods to protect DAR and DIT. This complexity poses risk that agnostic
and abstract AppDevSecOps process falls short to identify true attack surface,
and risk posed by such distinctive security components and methods. The
article has identified the distinctive security components encompassing the
attack surface in detail for Data under consideration. The paper also explains
actual experiences on how CICD feedback process between application teams,
vulnerability monitoring tools, and policy makers in a AppDevSecOps
scenario helped improve the security posture of involved applications. The
paper has further built a set of security guidelines to apply to the DAR/DIT
security components and to the tools involved in the AppDevSecOps process.

Copyright © 2026 International Journals of Multidisciplinary Research

Academy. All rights reserved.

Author correspondence:

Veerbhadra Magdum, CCSP, FRM,
Email: v_magdum@yahoo.com

1. Introduction

1.1 Importance of Data Security

As per the Verizon data breach investigation report,
on page 17, published in 2025, credentials are not
just the old fashioned user id and password but they
can be various types of secrets that can expose
organizations data for mass leakage and such
incidents could require a considerably large time to
remediate[1].

Given the magnitude of such events, many
professionals across various industries dedicate
considerable efforts and time to comply with
information security policies set forward by the
enterprise security teams. One of the policies
consistently monitored in recent times is around
securing the data that is at rest or in transit or in use.
This policy requires the data processed in the
application and all the channels used to access this
data to be threat proof. This entails configuring the
recommended data encryption methods, usage of
vaults and using secure protocols of communication
and secrets across the endpoints. Any lapses in

securing these components or endpoints will be risk
prone and would require security checks and
practices in place.

1.2 Objective and Research Methodology

This article will detail out the various types of secrets
and components used to protect data that is at rest or
in transit or in use. Also, the article describes few
real experiences of AppDev team wherein policy
makers have built policies to protect only critical
secrets or endpoints of data but are not aware of other
secrets or endpoints which create a hidden risk. Such
real experience references are used in this article to
suggest a AppDevSecOps process in which feedback
loop is recommended between app dev teams, policy
makers, policy implementers so that all the
vulnerable secrets, endpoints or components are
identified and protected. The article also lists the
recommendations and guidelines to identify and
protect all such secrets, endpoints or components
reducing the chances of any breach.

17 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

http://www.ijmra.us/
http://www.ijmra.us/

ISSN: 2249-0558 L Impact Factor: 7.119

2. Components,
DevSecOps and
improvements

challenges with
recommended

The application under review is a three-tiered
web application - comprising application, web and
database components, with each tier serving the
application business logic, application Ul and the
store of structured or unstructured data, respectively.

2.1 Components and gaps in Data at Rest (DAR)
DevSecOps process

Following is the discussion of all the places that can
have data at Rest (DAR), in the application under
consideration. Also discussion includes real
experiences for some of the pitfalls observed in the
AppDevSecOps process and the practices that
should be followed to strengthen AppDevSecOps
process

2.1.1 Secrets or Passwords of critical accounts
Sertup and components - Every tier of the
application has an entry point through the operating
system service account or a database account which
again can open doors within to multiple internal
accounts. These service accounts or database
accounts are considered critical as any breach to
these accounts access can lead to a risk of DAR
breach and can open the entire IT infrastructure for a
more severe form of malware. Given the importance
of these accounts, policy makers want to ensure that
access to these accounts is secure. Following is a
brief introduction and listing of critical components
involved in securing access to such service accounts.
Plaintext - The input text to a cipher suite that is
converted into a secure cipher text. For e.g.
Applications service account password in the current
case of discussion.

Cipher suite - An algorithm or a set of rules for
performing encryption or decryption of the plaintext
passed as input.

Key — Additional randomized salt that a cipher suite
employs in combination with the plaintext while
performing encryption or decryption.

Ciphertext - The text encrypted with the use of a
cipher suite and a key, that cannot be transformed
back to its original plaintext form without the usage
of decryption.

Encryption - The process of transforming the input
plaintext to the ciphertext with the use of a cipher
and a key.

Decryption - The reverse process of transforming the
ciphertext to the plaintext with the use of a cipher
suite and a key.

Our experience and the observed risk - Diagram 1
below depicts the deployment of components used to
secure passwords or secrets in an application. Note
that in this csae, the keys used are stored in the
proprietary encryption or decryption program locally
on an application server. Also, the configuration files
maintain ~ list of compatible encryption
standards/cipher suites on the application server
locally.

The diagram is having a single component marked
in green whereas other components are marked in
orange for a purpose of explanation of real
experience indicating pitfalls in the AppDevSecOps
process used. In this experience AppDev team is
provided with a vulnerability report and AppDev
team discovered that the scan was not configured to
investigate many of the secrets generation
components that are highlighted in orange in
Diagram 1. Instead, policy and focus seems to center
only on the cipher suites used in password
encryption. As a result, many components are not
fully scanned or investigated, leaving a large
proportion of the application effectively unreviewed.

Diagram 1: Application critical components for secrecy

[

Database Server

Web Server

Application Server

Encryption program

- Key stored in
Password in memory configfiles

Decryption Program

Encrypted password

= &

Not configured for scan

18

International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

http://www.ijmra.us/

International Journal of Management, IT & Engineering

Vol. 16 Issue 01, January 2026,
ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

The initial scan report did, at least, reveal that it was
needed to update the cipher suites to the latest
available versions. The AppDev team was tasked
with doing this — but, on investigating more deeply,

AppDev team made the following discoveries about

those other, unreviewed components:

e Cipher suites were listed in multiple places in
the configuration files on the operating system
of multiple server layers. Consequently, there
was no single place or easy way to update them.
This complexity required considerable efforts to
fully test our resolution.

e The keys used to generate encrypted strings for
the input passwords were hardcoded as clear
texts in multiple places, also in the configuration
files for the operating system of multiple server
layers. Such poor key management could all-
too-easily result in an application data breach,
requiring AppDev team to resolve this too.

e The encryption/decryption programs, and the
configuration files for keys and cipher suites, all
had an elevated application account
permissions, instead of being restricted to
execute privileges only.

e Some instances of cleartext passwords were
hardcoded and didn’t use the
encryption/decryption methods.

e The application supported symmetric
encryption, which — due to the other
shortcomings — could have enabled intruders to
construct passwords.

intended

With this experience it is recommended that every
component in the diagram should be secured and it
is suggested that the scanning tools should include a
key management review, encryption/decryption
program reviews, privilege review of critical
components, and data access through API calls
instead of hardcoded keys or secrets.

2.1.2 Sensitive Personal Information stored in the

database

Vendor usually works with customers admin users to

identify PI/SPl elements in the database and

mutually decide on methods to securely store such

data. Following are the methods generally used and

also discussed are real experiences encountered

while implementing such controls -

e Data obfuscation —Databases provide built in
functions or APIs to obfuscate data which is

kind of replacing actual PI data elements with

some randomly generated data of similar format
as that of underlying Pl elements. Real
experiences encountered indicate that this
generally works well for non production
environments but production data is expected to
be available to the business users as is which can
still be a data security risk.

e Dataencryption — Use keys, ciphers and custom
encryption/decryption routines to generate
encrypted strings to replace Pl elements. Real
experience observed with keys is listed in
previous section and additionally this becomes
a overhead to the process and increases surface
attack.

e Data tokenization — Use tokens of data to
replace Pl data elements. This method is
generally used for limited regulatory use cases
and use of tokens does increase surface attack.

2.1.3 Sensitive data files on infrastructure servers

Applications as mentioned earlier may have 3 tiers
architecture and 3 separate servers for each tier -
application, web, database. Any sensitive files stored
on the servers should be protected with following
methods-

Least privilege and need to know principles — the
file permissions and locations should be such that
only people or groups of people requiring access to
such data are permitted to access.

Password protection of files — Files should be
password protected with password rotated
periodically and shared with only permitted people.
Secure data access through application -
Application built role based access allowing access
to such data to only permitted people.

The actual experience encountered with security of
such objects is that object numbers turn out to be
huge increasing surface attack and also deep into the
application that are typically not uncovered by the
policy makers and implementers without AppDev
teams knowledge.

2.2 Components and gaps in Data in Transit (DIT)
DevSecOps process

Diagram 2 below depicts the application
components or endpoints that require security
considerations for Data in Transit (DIT). Subsequent
sub sections include discussion on these components
with real experiences for some of the pitfalls
observed in the DevSecOps process and the
discussion includes the practices that should be
followed to strengthen the DevSecOps process.

19 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

http://www.ijmra.us/
http://www.ijmra.us/

ISSN: 2249-0558 L Impact Factor: 7.119

Diagram 2: Data in Transit (DIT) Endpoints

Application Users

=
o g ®
L~

TLS

LDAP With AD

Network Security Guard
and Firewall Rules

\

AFPl/CLU

Calling Clients

Application Server and Reporting Analytics

Database Server and Schemas

DLP tools

2.2.1 Network security and firewall rules

Sertup and components - Application under review
hosts frontend services including services required
for data processing on application server, whereas
application backend is hosted on a web server. The
database is hosted on another server in a three tier
architecture. Connectivity and the data movement
across these hosts is configurable through the
application configuration files and requires specific
list of ports to be opened for communication. It is
ensured that only these ports are open for
communication between all components and all
other ports including default ports are blocked for
any traffic. Additionally, the servers are protected by
enterprise specific firewall rules and other secure
tools or mechanisms, that organization requires by
policy to intercept and block internal and external
unwanted traffic.

Our experience and the observed risk - In the
application used, it is observed that the application
contains many services that interact with each other
behind the scene and implicitly require multiple
ports to be open. This implicit requirement if not
identified and not mitigated can lead to a security

TLS

h A
Analytics Users

®oa 9
——

threat. The AppDev teams started to collaborate witb
SecOps teams to establish a procedure to monitor
traffic on all the ports used by such services, to

document all
periodically audit and

the ports requirements and to

recertify firwall rules

configured for these ports.

2.2.2 TLS / https protocols and associated
certificates

Setup and components - Further the DIT between
the servers in the application provide following
specific configuration options-

Application under consideration has an Ul that
is rendered by the web container which
provisions LDAP based authentication via AD
and Role Based Access Controls for
authorization. The LDAP integration is done
using TLS protection to the traffic over TLS
port and using TLS / https URL.

The protected web container resources are
configured to use TLS port and TLS / https

20

International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

http://www.ijmra.us/

ISSN: 2249-0558 L Impact Factor: 7.119

URL. This ensures that all the data that is
exchanged across all servers and with users is
always encrypted and tamper proof.

e Application configuration used a Oracle
database schema that hosts the setup and
configuration of applications and another
schema that hosts the customer transactions
data. Both schemas are configured with the roles
and privileges such that those are restricted to
the need to know and least required levels. Also,
the database client’s connection URL is
configured over a listener port that allows TLS
connection only.

e The TLS configuration discussed above
requires use of certificates for supporting key
exchanges. The certificates are ensured to be
within their validity period and are following
standard formats supported by latest security
standards.

Our experience and the observed risk - One of the
pitfall observed by AppDev team is that some users
used non SSL ports for client to database
connections even though server to server
communicatins are secured to only use SSL ports.
Such practice is decided to be a risk as it could open
the data to security threats and is resolved in time.
Similar e.g. was observed in recent exploitation of
Oracle’s E-business suite of applications with CVE-
2025-61884 which is found to be remotely
exploitable that allowed unauthenticated attacker
with network access via HTTP [2]. The attack
exposed critical data of multiple customers and
signifies importance of the controls mentioned
above.

2.2.3 APl or Command Line Utilities requiring
secrets

Setup and components - Application in this
scenario provides many command line utilities for
e.g. object migrations across environments, external
batch scheduler interface, etc. These utilities require
a connection through an application native account
with roles to perform the underlying tasks of object
migration or batch executions.

Our experience and the observed risk - As shown
in diagram 2 these utilities or APIs are usually called
from client tools offered by different vendors and
managed by teams other than application teams.
Communication between these client tools and the
application can lead to a risk and AppDevSecOps
teams are suggested to follow TLS standards and to
follow all the DIT standards for sharing secrets
across all the application interfacing tools.

2.2.4 User Downloads of Sensitive Data

Setup and components - The application in this
scenario comes integrated with tools for analytics
reporting. It is ensured that reporting tools followed
similar DAR/DIT standards.

Our experience and the observed risk - The users
having access to these reports can potentially
download the data to their desktops and pose the risk
of data exposure. The access of such users is
suggested to be configured with need to know and
least privilege principles. Also, appropriate audit and
network security rules are suggested to be applied
across the network boundaries allowing the data to
cross, and also it is suggested to use data loss
prevention tools.

3. Recommendations, best practices and
process improvements

3.1 Recommendations and best practices
The process of controlling applications entry point,
network interfaces and the associated service
accounts/identities access, involves many implicit or
explicit components. These are crucial for secure
DAR/DIT channels of communication. With the
advent of advanced computing methods these
critical components become more vulnerable and the
application security will largely depend on how
securely these components are stored, access
protected and managed. Here are some
recommendations and best practices to protect these
components -

e Configure scanning tools to provide the most
granular information about the vulnerabilities so
that the application teams can isolate the attack
surface. For e.g. configure the scan for operating
systems file paths and database tables storing
vulnerable configuration of keys, cipher suites,
encryption programs.

e Maintain inventory of critical components like
cipher suites used, keys used, and methods used
to secure keys or passwords and ensure they
follow requisite security standards or policies.
These items should be periodically updated to
follow latest standards.

e Parameterize or use a common and secure store
for all the critical components instead of
repeating configuration in multiple places and
tiers of applications that require usage of these
components.

e Asan additional layer of security encrypt all key
configuration files or tables where the critical
components are configured.

e Privileges to these critical components should
be very restrictive and should be managed by
the super users and should not be accessible

21

International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

http://www.ijmra.us/

ISSN: 2249-0558 L Impact Factor: 7.119

with full permissions to the application accounts
or non-privileged accounts.

e Where possible or supported rely on
public/private key or asymmetric methods
instead of symmetric methods.

e Use stronger and latest encryption methods that
application supports.

e Use certificates that are valid and are not
expired and implement secure and latest
formats.

e Use wallets or vaults for storing these critical
components and use the application supported
API interfaces with these wallets or vaults. This
will help in automating periodic rotation of
these critical components in a secure way and
reduce the vulnerability attack.

e Remove default ports and default passwords
configuration of admin accounts from all places
in application. Implement a password policy for
all user accounts and service accounts.

e Asan additional oversight, firewall rules should
be reviewed periodically and certified by system
owners.

These best practices and recommendations could be
used for multiple applications by the information
security team which will help them tighten the
organization’s security practices.

3.2 Process improvements

Here are the recommendations to impve
AppDevSecOps process that are based on the lessons
learned —

e Employ a template so that multiple applications
can identify and implement such critical
components in a homogeneous way.

e Hold peer reviews at every major milestone of
the application lifecycle, so that awareness and
compliance becomes the focus of the
application teams.

e Publish periodic scans of each application’s
critical components with granular details, assign
resolutions to respective teams and get feedback
from the application teams for improvements in

References

the vulnerability identification and remediation
process.

e Train application teams on the scanning
processes and understand the parameters of
application security posture. This softens the
resistance of AppDev teams by helping them to
understand that identifying and mitigating
security risk is a necessity rather than a burden
and can provide valuable learning experiences.

4. Conclusion

The entire exercise helped us identify following
listed components for an applications data security -
Data at Rest (DAR) involves following components
in addition to generally considered encryption
standards

e Application data stored within database
schemas,

e Application server’s sensitive configuration
files,

e Web server’s sensitive configuration files.

e Data encryption standards, cipher suites,
encryption/decryption keys and programs,
storage of these components,

e API’s and Command line utilities.

Data in Transit (DIT)

components —

e Client tools TLS or SSL connectivity to the
database schemas,

e Infrastructure server’s SSL connectivity to the
database schemas,

e Infrastructure servers (application, web,
database) to and from traffic using SSH or TLS,

o Network security and firewall rules

e Certificates associated with these components

involves following

Also, the experiences shared in this article can help
others build a more robust vulnerability management
process by using deeper insights by AppDev SME's,
and an increased collaboration with policy makers
and rest of the SecOps teams. The recommendations
and guidelines derived from the lessons learned are
listed in this article as well and we hope that others
will benefit from our experiences.

[1] “Verizon 2025 Data Breach Investigations Report”, Page 17
[2] https://www.bleepingcomputer.com/news/security/oracle-silently-fixes-zero-day-exploit-leaked-by-shinyhunters/,

https://nvd.nist.gov/vuln/detail/CVE-2025-61884

22

International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

http://www.ijmra.us/
https://www.bleepingcomputer.com/news/security/oracle-silently-fixes-zero-day-exploit-leaked-by-shinyhunters/

