
International Journal of Management, IT & Engineering
Vol. 16 Issue 01, January 2026,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

17 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Process for Identifying and Securing Data Compoents of

Application

Veerbhadra Magdum

 Abstract

 This article examines Data at Rest (DAR) and Data in Transit (DIT) security

components, and controls around those components in a web application

environment. Traditional policies around these controls look at all the

applications and systems with a one solution fits all, kind of an approach while

devising policies around DAR and DIT. Modern applications are getting

increasingly complex and use distinctive security components and security

methods to protect DAR and DIT. This complexity poses risk that agnostic

and abstract AppDevSecOps process falls short to identify true attack surface,

and risk posed by such distinctive security components and methods. The

article has identified the distinctive security components encompassing the

attack surface in detail for Data under consideration. The paper also explains

actual experiences on how CICD feedback process between application teams,

vulnerability monitoring tools, and policy makers in a AppDevSecOps

scenario helped improve the security posture of involved applications. The

paper has further built a set of security guidelines to apply to the DAR/DIT

security components and to the tools involved in the AppDevSecOps process.

Keywords:

Application Security;

SecOps; DevSecOps;

AppDevSecOps;

Data at Rest;

Data in Transit;

DAR;

DIT.

Copyright © 2026 International Journals of Multidisciplinary Research

Academy. All rights reserved.

Author correspondence:

Veerbhadra Magdum, CCSP, FRM,

Email: v_magdum@yahoo.com

1. Introduction
1.1 Importance of Data Security

As per the Verizon data breach investigation report,

on page 17, published in 2025, credentials are not

just the old fashioned user id and password but they

can be various types of secrets that can expose

organizations data for mass leakage and such

incidents could require a considerably large time to

remediate[1].

Given the magnitude of such events, many

professionals across various industries dedicate

considerable efforts and time to comply with

information security policies set forward by the

enterprise security teams. One of the policies

consistently monitored in recent times is around

securing the data that is at rest or in transit or in use.

This policy requires the data processed in the

application and all the channels used to access this

data to be threat proof. This entails configuring the

recommended data encryption methods, usage of

vaults and using secure protocols of communication

and secrets across the endpoints. Any lapses in

securing these components or endpoints will be risk

prone and would require security checks and

practices in place.

1.2 Objective and Research Methodology

This article will detail out the various types of secrets

and components used to protect data that is at rest or

in transit or in use. Also, the article describes few

real experiences of AppDev team wherein policy

makers have built policies to protect only critical

secrets or endpoints of data but are not aware of other

secrets or endpoints which create a hidden risk. Such

real experience references are used in this article to

suggest a AppDevSecOps process in which feedback

loop is recommended between app dev teams, policy

makers, policy implementers so that all the

vulnerable secrets, endpoints or components are

identified and protected. The article also lists the

recommendations and guidelines to identify and

protect all such secrets, endpoints or components

reducing the chances of any breach.

http://www.ijmra.us/
http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

18 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

2. Components, challenges with

DevSecOps and recommended

improvements

The application under review is a three-tiered

web application - comprising application, web and

database components, with each tier serving the

application business logic, application UI and the

store of structured or unstructured data, respectively.

2.1 Components and gaps in Data at Rest (DAR)

DevSecOps process

Following is the discussion of all the places that can

have data at Rest (DAR), in the application under

consideration. Also discussion includes real

experiences for some of the pitfalls observed in the

AppDevSecOps process and the practices that

should be followed to strengthen AppDevSecOps

process

2.1.1 Secrets or Passwords of critical accounts

Sertup and components - Every tier of the

application has an entry point through the operating

system service account or a database account which

again can open doors within to multiple internal

accounts. These service accounts or database

accounts are considered critical as any breach to

these accounts access can lead to a risk of DAR

breach and can open the entire IT infrastructure for a

more severe form of malware. Given the importance

of these accounts, policy makers want to ensure that

access to these accounts is secure. Following is a

brief introduction and listing of critical components

involved in securing access to such service accounts.

Plaintext - The input text to a cipher suite that is

converted into a secure cipher text. For e.g.

Applications service account password in the current

case of discussion.

Cipher suite - An algorithm or a set of rules for

performing encryption or decryption of the plaintext

passed as input.

Key – Additional randomized salt that a cipher suite

employs in combination with the plaintext while

performing encryption or decryption.

Ciphertext - The text encrypted with the use of a

cipher suite and a key, that cannot be transformed

back to its original plaintext form without the usage

of decryption.

Encryption - The process of transforming the input

plaintext to the ciphertext with the use of a cipher

and a key.

Decryption - The reverse process of transforming the

ciphertext to the plaintext with the use of a cipher

suite and a key.

Our experience and the observed risk - Diagram 1

below depicts the deployment of components used to

secure passwords or secrets in an application. Note

that in this csae, the keys used are stored in the

proprietary encryption or decryption program locally

on an application server. Also, the configuration files

maintain list of compatible encryption

standards/cipher suites on the application server

locally.

The diagram is having a single component marked

in green whereas other components are marked in

orange for a purpose of explanation of real

experience indicating pitfalls in the AppDevSecOps

process used. In this experience AppDev team is

provided with a vulnerability report and AppDev

team discovered that the scan was not configured to

investigate many of the secrets generation

components that are highlighted in orange in

Diagram 1. Instead, policy and focus seems to center

only on the cipher suites used in password

encryption. As a result, many components are not

fully scanned or investigated, leaving a large

proportion of the application effectively unreviewed.

http://www.ijmra.us/

International Journal of Management, IT & Engineering
Vol. 16 Issue 01, January 2026,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &
Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

19 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

The initial scan report did, at least, reveal that it was

needed to update the cipher suites to the latest

available versions. The AppDev team was tasked

with doing this – but, on investigating more deeply,

AppDev team made the following discoveries about

those other, unreviewed components:

 Cipher suites were listed in multiple places in

the configuration files on the operating system

of multiple server layers. Consequently, there

was no single place or easy way to update them.

This complexity required considerable efforts to

fully test our resolution.

 The keys used to generate encrypted strings for

the input passwords were hardcoded as clear

texts in multiple places, also in the configuration

files for the operating system of multiple server

layers. Such poor key management could all-

too-easily result in an application data breach,

requiring AppDev team to resolve this too.

 The encryption/decryption programs, and the

configuration files for keys and cipher suites, all

had an elevated application account

permissions, instead of being restricted to

execute privileges only.

 Some instances of cleartext passwords were

hardcoded and didn’t use the intended

encryption/decryption methods.

 The application supported symmetric

encryption, which – due to the other

shortcomings – could have enabled intruders to

construct passwords.

With this experience it is recommended that every

component in the diagram should be secured and it

is suggested that the scanning tools should include a

key management review, encryption/decryption

program reviews, privilege review of critical

components, and data access through API calls

instead of hardcoded keys or secrets.

2.1.2 Sensitive Personal Information stored in the

database

Vendor usually works with customers admin users to

identify PI/SPI elements in the database and

mutually decide on methods to securely store such

data. Following are the methods generally used and

also discussed are real experiences encountered

while implementing such controls -

 Data obfuscation –Databases provide built in

functions or APIs to obfuscate data which is

kind of replacing actual PI data elements with

some randomly generated data of similar format

as that of underlying PI elements. Real

experiences encountered indicate that this

generally works well for non production

environments but production data is expected to

be available to the business users as is which can

still be a data security risk.

 Data encryption – Use keys, ciphers and custom

encryption/decryption routines to generate

encrypted strings to replace PI elements. Real

experience observed with keys is listed in

previous section and additionally this becomes

a overhead to the process and increases surface

attack.

 Data tokenization – Use tokens of data to

replace PI data elements. This method is

generally used for limited regulatory use cases

and use of tokens does increase surface attack.

2.1.3 Sensitive data files on infrastructure servers

Applications as mentioned earlier may have 3 tiers

architecture and 3 separate servers for each tier -

application, web, database. Any sensitive files stored

on the servers should be protected with following

methods-

Least privilege and need to know principles – the

file permissions and locations should be such that

only people or groups of people requiring access to

such data are permitted to access.

Password protection of files – Files should be

password protected with password rotated

periodically and shared with only permitted people.

Secure data access through application –

Application built role based access allowing access

to such data to only permitted people.

The actual experience encountered with security of

such objects is that object numbers turn out to be

huge increasing surface attack and also deep into the

application that are typically not uncovered by the

policy makers and implementers without AppDev

teams knowledge.

2.2 Components and gaps in Data in Transit (DIT)

DevSecOps process

Diagram 2 below depicts the application

components or endpoints that require security

considerations for Data in Transit (DIT). Subsequent

sub sections include discussion on these components

with real experiences for some of the pitfalls

observed in the DevSecOps process and the

discussion includes the practices that should be

followed to strengthen the DevSecOps process.

http://www.ijmra.us/
http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

20 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

2.2.1 Network security and firewall rules

Sertup and components - Application under review

hosts frontend services including services required

for data processing on application server, whereas

application backend is hosted on a web server. The

database is hosted on another server in a three tier

architecture. Connectivity and the data movement

across these hosts is configurable through the

application configuration files and requires specific

list of ports to be opened for communication. It is

ensured that only these ports are open for

communication between all components and all

other ports including default ports are blocked for

any traffic. Additionally, the servers are protected by

enterprise specific firewall rules and other secure

tools or mechanisms, that organization requires by

policy to intercept and block internal and external

unwanted traffic.

Our experience and the observed risk - In the

application used, it is observed that the application

contains many services that interact with each other

behind the scene and implicitly require multiple

ports to be open. This implicit requirement if not

identified and not mitigated can lead to a security

threat. The AppDev teams started to collaborate witb

SecOps teams to establish a procedure to monitor

traffic on all the ports used by such services, to

document all the ports requirements and to

periodically audit and recertify firwall rules

configured for these ports.

2.2.2 TLS / https protocols and associated

certificates

Setup and components - Further the DIT between

the servers in the application provide following

specific configuration options-

 Application under consideration has an UI that

is rendered by the web container which

provisions LDAP based authentication via AD

and Role Based Access Controls for

authorization. The LDAP integration is done

using TLS protection to the traffic over TLS

port and using TLS / https URL.

 The protected web container resources are

configured to use TLS port and TLS / https

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

21 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

URL. This ensures that all the data that is

exchanged across all servers and with users is

always encrypted and tamper proof.

 Application configuration used a Oracle

database schema that hosts the setup and

configuration of applications and another

schema that hosts the customer transactions

data. Both schemas are configured with the roles

and privileges such that those are restricted to

the need to know and least required levels. Also,

the database client’s connection URL is

configured over a listener port that allows TLS

connection only.

 The TLS configuration discussed above

requires use of certificates for supporting key

exchanges. The certificates are ensured to be

within their validity period and are following

standard formats supported by latest security

standards.

Our experience and the observed risk - One of the

pitfall observed by AppDev team is that some users

used non SSL ports for client to database

connections even though server to server

communicatins are secured to only use SSL ports.

Such practice is decided to be a risk as it could open

the data to security threats and is resolved in time.

Similar e.g. was observed in recent exploitation of

Oracle’s E-business suite of applications with CVE-

2025-61884 which is found to be remotely

exploitable that allowed unauthenticated attacker

with network access via HTTP [2]. The attack

exposed critical data of multiple customers and

signifies importance of the controls mentioned

above.

2.2.3 API or Command Line Utilities requiring

secrets

Setup and components - Application in this

scenario provides many command line utilities for

e.g. object migrations across environments, external

batch scheduler interface, etc. These utilities require

a connection through an application native account

with roles to perform the underlying tasks of object

migration or batch executions.

Our experience and the observed risk - As shown

in diagram 2 these utilities or APIs are usually called

from client tools offered by different vendors and

managed by teams other than application teams.

Communication between these client tools and the

application can lead to a risk and AppDevSecOps

teams are suggested to follow TLS standards and to

follow all the DIT standards for sharing secrets

across all the application interfacing tools.

2.2.4 User Downloads of Sensitive Data

Setup and components - The application in this

scenario comes integrated with tools for analytics

reporting. It is ensured that reporting tools followed

similar DAR/DIT standards.

Our experience and the observed risk - The users

having access to these reports can potentially

download the data to their desktops and pose the risk

of data exposure. The access of such users is

suggested to be configured with need to know and

least privilege principles. Also, appropriate audit and

network security rules are suggested to be applied

across the network boundaries allowing the data to

cross, and also it is suggested to use data loss

prevention tools.

3. Recommendations, best practices and

process improvements

3.1 Recommendations and best practices

The process of controlling applications entry point,

network interfaces and the associated service

accounts/identities access, involves many implicit or

explicit components. These are crucial for secure

DAR/DIT channels of communication. With the

advent of advanced computing methods these

critical components become more vulnerable and the

application security will largely depend on how

securely these components are stored, access

protected and managed. Here are some

recommendations and best practices to protect these

components -

 Configure scanning tools to provide the most

granular information about the vulnerabilities so

that the application teams can isolate the attack

surface. For e.g. configure the scan for operating

systems file paths and database tables storing

vulnerable configuration of keys, cipher suites,

encryption programs.

 Maintain inventory of critical components like

cipher suites used, keys used, and methods used

to secure keys or passwords and ensure they

follow requisite security standards or policies.

These items should be periodically updated to

follow latest standards.

 Parameterize or use a common and secure store

for all the critical components instead of

repeating configuration in multiple places and

tiers of applications that require usage of these

components.

 As an additional layer of security encrypt all key

configuration files or tables where the critical

components are configured.

 Privileges to these critical components should

be very restrictive and should be managed by

the super users and should not be accessible

http://www.ijmra.us/

 ISSN: 2249-0558 Impact Factor: 7.119

22 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

with full permissions to the application accounts

or non-privileged accounts.

 Where possible or supported rely on

public/private key or asymmetric methods

instead of symmetric methods.

 Use stronger and latest encryption methods that

application supports.

 Use certificates that are valid and are not

expired and implement secure and latest

formats.

 Use wallets or vaults for storing these critical

components and use the application supported

API interfaces with these wallets or vaults. This

will help in automating periodic rotation of

these critical components in a secure way and

reduce the vulnerability attack.

 Remove default ports and default passwords

configuration of admin accounts from all places

in application. Implement a password policy for

all user accounts and service accounts.

 As an additional oversight, firewall rules should

be reviewed periodically and certified by system

owners.

These best practices and recommendations could be

used for multiple applications by the information

security team which will help them tighten the

organization’s security practices.

3.2 Process improvements

Here are the recommendations to impve

AppDevSecOps process that are based on the lessons

learned –

 Employ a template so that multiple applications

can identify and implement such critical

components in a homogeneous way.

 Hold peer reviews at every major milestone of

the application lifecycle, so that awareness and

compliance becomes the focus of the

application teams.

 Publish periodic scans of each application’s

critical components with granular details, assign

resolutions to respective teams and get feedback

from the application teams for improvements in

the vulnerability identification and remediation

process.

 Train application teams on the scanning

processes and understand the parameters of

application security posture. This softens the

resistance of AppDev teams by helping them to

understand that identifying and mitigating

security risk is a necessity rather than a burden

and can provide valuable learning experiences.

4. Conclusion
The entire exercise helped us identify following

listed components for an applications data security -

Data at Rest (DAR) involves following components

in addition to generally considered encryption

standards

 Application data stored within database

schemas,

 Application server’s sensitive configuration

files,

 Web server’s sensitive configuration files.

 Data encryption standards, cipher suites,

encryption/decryption keys and programs,

storage of these components,

 API’s and Command line utilities.

Data in Transit (DIT) involves following

components –

 Client tools TLS or SSL connectivity to the

database schemas,

 Infrastructure server’s SSL connectivity to the

database schemas,

 Infrastructure servers (application, web,

database) to and from traffic using SSH or TLS,

 Network security and firewall rules

 Certificates associated with these components

Also, the experiences shared in this article can help

others build a more robust vulnerability management

process by using deeper insights by AppDev SME's,

and an increased collaboration with policy makers

and rest of the SecOps teams. The recommendations

and guidelines derived from the lessons learned are

listed in this article as well and we hope that others

will benefit from our experiences.

References

[1] “Verizon 2025 Data Breach Investigations Report”, Page 17

[2] https://www.bleepingcomputer.com/news/security/oracle-silently-fixes-zero-day-exploit-leaked-by-shinyhunters/,

https://nvd.nist.gov/vuln/detail/CVE-2025-61884

http://www.ijmra.us/
https://www.bleepingcomputer.com/news/security/oracle-silently-fixes-zero-day-exploit-leaked-by-shinyhunters/

